

FD060-60C-CM

FlexPro[®] Series **Product Status:** Active

SPECIFICATIONS

Current Continuous DC Supply Voltage Network Communication 60 A 10 – 55 VDC CANopen

The **FD060-60C-CM** is a serve drive and development board assembly for a FE060-60C-CM FlexPro[®] series serve drive with IMPACTTM architecture. Connections to the controller, motor, power, and feedback are simplified through the standard connectors featured on the board. The **FD060-60C-CM** is ideal for prototyping and can be used in production and industrial environments as well.

The **FD060-60C-CM** offers full tuning control of all servo loops and is designed to drive brushed and brushless servo motors, stepper motors, and AC induction motors. The drive assembly accepts a variety of external command signals, or can use the built-in Motion Engine, an internal motion controller used with Sequencing and Indexing commands. Programmable digital and analog I/O are included to enhance interfacing with external controllers and devices.

The **FD060-60C-CM** utilizes CANopen network communication and is configured via USB. All drive and motor parameters are stored in non-volatile memory.

IMPACT[™] (Integrated **M**otion **P**latform **A**nd **C**ontrol **T**echnology) combines exceptional processing capability and highcurrent components to create powerful, compact, feature-loaded servo solutions. IMPACT[™] is used in all FlexPro[®] drives and is available in custom products as well.

FEATURES

- Follows the CAN in Automation (CiA) 301 Communications Profile and 402 Device Profile
- Four Quadrant Regenerative Operation
- Programmable Gain Settings
- PIDF Velocity Loop

- On-the-Fly Mode Switching
- On-the-Fly Gain Set Switching
- Dedicated Safe Torque Off (STO) Inputs
- Bridge Status, Fault and Network Status LEDs
- I/O Status LEDs
- Standard Connections for Easy Setup

Feedback Supported	 Absolute Encoder BiSS C-Mode EnDat 2.2 Tamagawa/Nikon SSI Incremental Encoder Hall Sensors Aux Incremental Encoder Tachometer (±10V) 	Motors Supported	 Three Phase Single Phase Stepper AC Induction 	Modes of Operation	 Profile Modes Cyclic Synchronous Modes Current Velocity Position Interpolated Position Mode (PVT)
Command Sources	 Over the Network ±10V Analog Sequencing Indexing Jogging Step & Direction Encoder Following 	Inputs / Outputs	 4 Programmable Digital Inputs 3 Programmable Digital Outputs 1 Programmable Analog Input 	Agency Approvals	 RoHS UL (Pending) CE (Pending) TUV Rheinland (STO) (Pending)

BLOCK DIAGRAM

INFORMATION ON APPROVALS AND COMPLIANCES

RoHS Compliant

The RoHS Directive restricts the use of certain substances including lead, mercury, cadmium, hexavalent chromium and halogenated flame retardants PBB and PBDE in electronic equipment.

SPECIFICATIONS

	Electric	al Specifications
Description	Units	Value
Nominal DC Supply Input Range	VDC	12 - 48
DC Supply Input Range	VDC	10 – 55
DC Supply Undervoltage	VDC	8
DC Supply Overvoltage	VDC	58
Logic Supply Input Range (required)	VDC	10 – 55
Safe Torque Off Voltage (Default)	VDC	5
Bus Capacitance	μF	500
Maximum Continuous Current Output ¹	A (Arms)	60 (60)
Efficiency at Rated Power	%	99
Maximum Continuous Output Power	W	3267
Maximum Power Dissipation at Rated Power	W	33
Minimum Load Inductance (line-to-line) ²	μH	150 (@ 48VDC supply); 75 (@24VDC supply); 40 (@12VDC supply)
Switching Frequency	kHz	20
Maximum Output PWM Duty Cycle	%	83
	Contro	l Specifications
Description	Units	Value
Communication Interfaces	-	CANopen (USB for configuration)
Command Sources	-	±10 V Analog, Over the Network, Sequencing, Indexing, Jogging, Step & Direction, Encoder Following
Feedback Supported	-	Absolute Encoder (BiSS C-Mode, EnDat 2.2, Tamagawa/Nikon, SSI), Incremental Encoder, Hall Sensors, Auxiliary Incremental Encoder, Tachometer (±10V)
Commutation Methods	-	Sinusoidal, Trapezoidal
Modes of Operation	-	Profile Modes, Cyclic Synchronous Modes, Current, Velocity, Position, Interpolated Position Mode (PVT)
Motors Supported ³	-	Three Phase (Brushless Servo), Single Phase (Brushed Servo, Voice Coil, Inductive Load), Stepper (2- or 3-Phase Closed Loop), AC Induction (Closed Loop Vector)
Hardware Protection	-	40+ Configurable Functions, Over Current, Over Temperature (Drive & Motor), Over Voltage, Short Circuit (Phase-Phase & Phase-Ground), Under Voltage
Programmable Digital Inputs/Outputs	-	4/3
Programmable Analog Inputs/Outputs	-	1/0
Primary I/O Logic Level	-	5 VDC, not isolated
Current Loop Sample Time	μs	50
Velocity Loop Sample Time	μs	100
Position Loop Sample Time	μs	100
Maximum Encoder Frequency	MHz	20 (5 pre-quadrature)
	Mechani	cal Specifications
Description	Units	Value
Size (H x W x D)	mm (in)	114.3 x 91.4 x 26.0 (4.50 x 3.60 x 1.03)
Weight	g (oz)	178.5 (6.3)
Ambient Operating Temperature Range ⁴	°C (°F)	0 - 65 (32 - 149)
Storage Temperature Range	°C (°F)	-40 – 85 (-40 – 185)
Relative Humidity	-	0-95%, non-condensing
P2 LOGIC POWER CONNECTOR	-	2-port Screw Terminal
P3 USB COMMUNICATION CONNECTOR	-	5-pin, Mini USB B Type port
P5 CANopen COMMUNICATION CONNECTORS	-	8-pin, dual row, 2.00 mm spaced plug terminal
P6 STO CONNECTOR	-	8-pin 2.00 mm spaced, enclosed, friction lock header
P7 IO CONNECTOR	-	12-pin 2.00 mm spaced dual-row plug terminal
P8 STEP/DIR CONNECTOR	-	8-pin 2.00 mm spaced dual-row plug terminal
P9 FEEDBACK 2 CONNECTOR	-	15-pin vertical D-Sub
P10 FEEDBACK 1 CONNECTOR		15-pin vertical D-Sub
P11/12/13 MOTOR POWER TERMINALS		3x Hex Screw Lug
P14/15 DC POWER TERMINALS	-	2x Hex Screw Lug
lotes	-	I ZATION JUIGW LUY

Notes

Continuous Arms value attainable when RMS Charge-Based Limiting is used.
Lower inductance is acceptable for bus voltages well below maximum. Use external inductance to meet requirements.
Maximum motor speed for stepper motors is 600 RPM. Consult the hardware installation manual for 2-phase stepper wiring configuration.

4. Additional cooling and/or heatsink may be required to achieve rated performance. Repeated over temperature events may cause damage to the drive due to the drive's high power density. Ensure that proper thermal management is adhered to during drive operation.

PIN FUNCTIONS

			P2 – Logi	ic Power Connector	
Pin	Name			Description / Notes	I/O
1	LOGIC PWR Logic Supply Input (10 – 3 on the main power supp			nput (10 – 55VDC) (required). Turn on the external logic supply first before turning power supply.	
2	LOGIC GND	.OGIC GND Ground			GND
Connector Information 2-port Screw Ter		2-port Screw Term	inal		
Mating Connector Details N/A		N/A			
Mating Connector Included		uded N/A		LOGIC PWR 1	

	P3 – USB Communication Connector							
Pin	Nc	ame		Description / Notes	I/O			
1	VBUS		Supply Voltage		0			
2	DATA-		Data -		I/O			
3	DATA+		Data +		I/O			
4	RESERVED		Reserved.		-			
5	GND		Ground		GND			
Conn	Connector Information 5-pin		ype port	GND 5				
Mating	Mating Connector Details TYCO: 149 ASSY)		2-meter STD-A to MINI-B	DATA+ 3 — DATA- 2 — VBUS 1 —				
Mating	Mating Connector Included No			<u> <u> </u></u>				

			P5 – CANopen (Communication Connector	
Pin	Nc	ime		Description / Notes	I/O
1	RESERVED		Reserved.		-
2	RESERVED		Reserved.		-
3	RESERVED		Reserved.		-
4	RESERVED		Reserved.		-
5	GND		Ground		GND
6	GND		Ground	GND	
7	CAN_H		CAN_H bus line (domin	I/O	
8	CAN_L		CAN_L bus line (domino	ant low)	I/O
Conn			00 mm spaced plug	GND 6 4 RESERVED CAN_L 8 2 RESERVED	
Mating) Connector Details	Molex: P/N 51353-0800 (housing); 56134-9100 (contacts)			
Mating	Connector Included	Yes		CAN_H 7 - 1 RESERVED GND 5 - 3 RESERVED	

			P6 –	STO Connector	
Pin	Nc	ame		Description / Notes	I/O
1	RESERVED		Reserved.		-
2	RESERVED		Reserved.		-
3	STO RETURN		Safe Torque Off Return		STORET
4	STO-1 INPUT		Safe Torque Off – Input	1	1
5	STO RETURN		Safe Torque Off Return		STORET
6	STO-2 INPUT		Safe Torque Off – Input	1	
7	RESERVED		Reserved.	-	
8	RESERVED		Reserved.	-	
Conr	Connector Information 8-p		paced, enclosed, ler	STO RETURN 5 - 3 STO RETURN RESERVED 7 - 1 RESERVED	
Mating	Connector Details	Molex: P/N 51110-0860 (housing); 50394- 8051 (pins)			
Mating	Connector Included	Yes		RESERVED 8 2 RESERVED STO-2 INPUT 6 4 STO-1 INPUT	

			P7 -	- IO Connector	
Pin	Nc	ame		Description / Notes	I/O
1	PDI-1		General Purpose Progra	ammable Digital Input	1
2	PDI-2		General Purpose Progra	ammable Digital Input	1
3	PDI-3		General Purpose Progra	ammable Digital Input	
4	PDI-4		General Purpose Progra	ammable Digital Input	I
5	PDO-1		General Purpose Progra	ammable Digital Output (TTL/8mA)	0
6	PDO-2		General Purpose Progra	ammable Digital Output (TTL/8mA)	0
7	PDO-3		General Purpose Progra	ammable Digital Output (TTL/8mA)	0
8	+5V_USER		+5V Supply Output. Short-circuit protected. (300ma total load capacity shared between P7-8, P8-7, P9-13, and P10-13)		0
9	GND		Ground.		GND
10	GND		Ground.		GND
11	PAI-1+		General Purpose Differential Programmable Analog Input or Reference Signal Input.		
12	PAI-1-		±10VDC Range (12-bit Resolution)		I
Conn	ector Information	12-pin, dual row, terminal	2.00 mm spaced plug	+5V_USER 8 — 6 PD0-2 GND 10 — 4 PD1-4 PA1-1 2 _ 1 = 2 PD-2	
		Molex: P/N 51353 56134-9100 (cont			
Mating Connector Included Yes			PAI-1+ 11 1 PDI-1 GND 9 3 PDI-3 PDD-3 7 5 PDD-1		

			P8 – ST	EP/DIR Connector	
Pin	Pin Name			Description / Notes	I/O
1	STEP +		Differential Step Input.		<u> </u>
2	STEP -		Billerennarerep inper.		
3	DIR +		Differential Direction Ing	out	I
4	DIR -		Differential Direction his	501.	1
5	RESERVED		Beconvod		-
6	RESERVED		Reserved.		-
7	+5V_USER		+5V Supply Output. Short-circuit protected. (300ma total load capacity shared between P7-8, P8-7, P9-13, and P10-13)		0
8	GND		Ground.		GND
Conn	ector Information	8-pin, dual row, 2 terminal	.00 mm spaced plug	RESERVED 6 4 DR - GND 8 2 STEP -	
		Molex: P/N 51353 56134-9100 (cont			
Mating Connector Included Yes		Yes		+5V_LISER 7 1 STEP + RESERVED 5 3 DR +	

			P9 – Feedb	oack 2 Connector		
Pin	Increme	ntal Encoder		Description / Notes	I/O	
1	HALL A		Single and ad Commute	Single-ended Commutation Sensor Inputs. Signals shared with Feedback 1 connector. Use only		
2	HALL B			her Feedback 1 or Feedback 2.	<u> </u>	
3	HALL C					
4	ENC 2 A+		Differential Incremental	Encoder A		
5	ENC 2 A-		Billoronianineronionian			
6	ENC 2 B+		Differential Incremental	Encoder B		
7	ENC 2 B-		2 more and a more more man			
8	ENC 2 INDEX+		Differential Incremental	Encoder Index.		
9	ENC 2 INDEX-					
10	RESERVED		Reserved.		-	
11	RESERVED		Reserved.		-	
12	GND		Ground.		GND	
13	+5V_USER		+5V Supply Output. Short-circuit protected. (300ma total load capacity shared between P7-8, P8-7, P9-13, and P10-13)			
			Motor Thermal Protection. Select which Thermistor pin is active using DIP Switch SW6 (see Board			
14	THERMISTOR		Configuration section below). Only one Thermistor pin between Feedback 1 and Feedback 2			
14	THERMISTOR		Connector can be active.		1	
15	RESERVED		Reserved.		-	
	Connector Information 15-pin, high-density,			ENC 2B+ 6		
Mating	Mating Connector Details or 1658670-1 (strip)		364-1; Housing P/N ; P/N 1658670-2 (loose)			
Mating	Mating Connector Included No			11 RESERVED		

			P10 – Feedback 1 Connector	
Pin	Absolute Encoder	Incremental Encoder	Description / Notes	
1	HALL A	HALL A	Single-ended Commutation Sensor Inputs. Signals shared with Feedback 2 connector. Use o	
2	HALL B	HALL B	all connections on either Feedback 1 or Feedback 2.	
3	HALL C	HALL C	The connections of either reedback for reedback 2.	1
4	ENC 1 DATA+	ENC 1 A+	Differential Data Line for Absolute Encoders (BiSS: SLO+/-) or Differential Incremental Encode	r I
5	ENC 1 DATA-	ENC 1 A-	Α.	1
6	ENC 1 CLOCK+	ENC 1 B+	Differential Clock Line for Absolute Encoders (BiSS: MA+/-) or Differential Incremental Encode	r I
7	ENC 1 CLOCK-	ENC 1 B-	В.	1
8	ENC 1 REF MARK+	ENC 1 I+	Differential Reference Mark for Absolute Encoders (Leave open for BiSS and EnDat 2.2) or	I
9	ENC 1 REF MARK-	ENC 1 I-	Differential Incremental Encoder Index.	1
10	RESERVED	RESERVED	Reserved.	-
11	RESERVED	RESERVED	Reserved.	
12	GND	GND	Ground.	
13	+5V_USER	+5V_USER	+5V Supply Output. Short-circuit protected. (300ma total load capacity shared between P7-8, P8-7, P9-13, and P10-13)	
14	THERMISTOR	THERMISTOR	Motor Thermal Protection. Select which Thermistor pin is active using DIP Switch SW6 (see Boo Configuration section below). Only one Thermistor pin between Feedback 1 and Feedback Connector can be active.	
15	RESERVED	RESERVED	Reserved.	-
Con	nector Information	15-pin, high-density	ENC 1 CLOCK+/B+ 6	
			364-1; Housing P/N s P/N 1658670-2 (loose)	
Mating Connector Included No		No	11 RESERVED 12 SGND 13 +6V_USER 14 THERMSTOR 15 RESERVED	

	P11/12/13 - Motor Power Terminals					
Pin	Nc	Name		Description / Notes	I/O	
1	MOTOR A		Motor Phase A.		0	
2	MOTOR B		Motor Phase B.		0	
3	MOTOR C		Motor Phase C.		0	
Connector Information Bu		Bushings with M4 Screw		MOTOR C MOTOR B MOTOR A		
Mating Connector Details		N/A				
Mating (Connector Included	N/A				

	P14/15 - DC Power Terminals								
Pin	in Name			Description / Notes		I/O			
1	HV		DC Supply Input (10-55	DC Supply Input (10-55 VDC).					
2	POWER GND		Ground.			GND			
Conn	ector Information	Bushings with M4 Screw		HV	POWER GND				
Mating	Connector Details	N/A							
Mating	Connector Included	N/A							

BOARD CONFIGURATION

Status LED Functions

LED	Description
STAT	Indicates drive power bridge status. GREEN when DC bus power is applied and the drive is enabled. RED when the drive is in a fault state.
LOGIC PWR	Indicates that logic power is available to the drive. GREEN when logic power is available.
EMA	Indicates whether the Emulated Encoder Output functionality is active. GREEN for Emulated Encoder Output active. OFF for Step & Direction Input or PWM & Direction Input.

Input/Output LED Functions

LED	LED Description		
DI1 – DI4	Indicates digital input status. GREEN when the corresponding digital input is active.		
DO1 – DO3	Indicates digital output status. BLUE when the corresponding digital output is active		

CANopen Node ID Switches

Switch Diagram	Description				
$\begin{pmatrix} 3^{45} \\ \gamma^{345} \\ \gamma^{$	Hexadecimal switch settings correspond to the CANopen Node ID. Allowable CANopen Node ID range using the rotary switches is 1 - 63. Node IDs above 63 can be set via ACE setup software or network commands and stored to NVM (up to a Node ID of 127). Setting the rotary switches to zero will use the address stored in NVM.				
		SW3	SW4	Node ID	
		0	0	Address stored in NVM	
Vare Vare		0	1	001	
		0	2	002	
SW3 SW4					
		3	D	61	
		3	E	62	
		3	F	63	

DIP Switches

Switch	Description	ON	OFF	
SW6	Motor Thermistor Selection. Note that both switches on SW6 must be set to the same position for proper operation.	Uses the motor thermistor reading from P9 – Feedback 2 Connector	Uses the motor thermistor reading from P10 – Feedback Connector	
SW8	Enables CAN Communication	CAN Enabled	CAN Disabled	
SW9	CAN Termination. The last device in a CAN network requires termination. Note that both switches on SW9 must be set to the same position for proper operation.	Terminated	Not terminated	
SW10	CAN Communication Selection. Note that all 4 switches of SW10 and SW11	R\$232/485	CAN	
SW11	must be set to the same position for proper operation.	K3Z3Z/403	CAN	

Safe Torque Off (STO) Inputs

The Safe Torque Off (STO) inputs are dedicated +5VDC sinking single-ended inputs. For applications not using STO functionality, disabling of the STO feature is required for proper drive operation. STO may be disabled by installing the included mating connector for the STO connector and following the STO Disable wiring instructions as given in the hardware installation manual. Consult the hardware installation manual for more information. Alternatively, a dedicated STO Disable Key connector is available for purchase for applications where STO is not in use. Contact the factory for ordering information.

MOUNTING DIMENSIONS

PART NUMBERING AND CUSTOMIZATION INFORMATION

ADVANCED Motion Controls also has the capability to promptly develop and deliver specified products for OEMs with volume requests. Our Applications and Engineering Departments will work closely with your design team through all stages of development in order to provide the best servo drive solution for your system. Equipped with on-site manufacturing for quick-turn customs capabilities, ADVANCED Motion Controls utilizes our years of engineering and manufacturing expertise to decrease your costs and time-to-market while increasing system quality and reliability.

Optimized Footprint	Tailored Project File
Private Label Software	Silkscreen Branding
OEM Specified Connectors	Optimized Base Plate
No Outer Case	Increased Current Limits
Increased Current Resolution	Increased Voltage Range
Increased Temperature Range	Conformal Coating
Custom Control Interface	Multi-Axis Configurations
Integrated System I/O	Reduced Profile Size and Weight

Available Accessories

ADVANCED Motion Controls offers a variety of accessories designed to facilitate drive integration into a servo system. Visit www.a-m-c.com to see which accessories will assist with your application design and implementation.

All specifications in this document are subject to change without written notice. Actual product may differ from pictures provided in this document.