
Click & Move Function Blocks

4/15/2016 1

Function Blocks

To the user, the FBs are crucial. These

are the software equivalent of

electronic chips. They contain inputs

and outputs, with associated names

and Data types. Each FB contains code

(like a small program) to give it its

functionality. The user only sees the

interface, being the inputs and outputs.

The code itself is hidden - this data

encapsulation and hiding is crucial to

separate the different levels of

programming and maintenance.

Function Block Parts

The name of the function block is located inside the upper section of the
block. The instance of the block is shown above the block. The instance name
is formed from the name of the library containing the block and the
numerical order the block was placed on the schematic. The blocks below
were taken from the MATH library.

Input pins are displayed along the left side of the block and output pins are
displayed along the right side. The name of the pin is shown inside the block
next to the pin and the data type of the pin is shown below the name of the
pin.

Function Block Library

The library contains a description of the function

block, how it works and how it may be used.

The description indicates compatibility of the

block with the various components of C&M and

the data types supported by the function block

pins.

Library Help

Use the C&M-MC Help

selection on the C&M Desktop

to list the C&M function blocks

in the library.

UDFB Overview

You can create a User Derived Function Block from a block of logic. The UDFB is

added to the library and can be used in the same way as the C&M supplied

function blocks. UDFB is convenient when the same logic is required in multiple

locations and as an organizational tool to improve the readability of the project

schematics.

Create UDFB

To create the UDFB start with a new empty schematic.

On the C&M Desktop click ‘File’, ‘New FBD (schematic)

C&M opens a blank schematic in

Eagle named ‘Untitled’.

Name UDFB

Choose ‘File’, ‘Save As’ in the top left corner of the Eagle

window and give the new schematic a name. Standard

convention is to use all upper case characters and under

scores as spaces. The name you use will identify the UDFB in

the library.

This schematic is named

‘SUM_PROD’.

Add Elements to the UDFB

Add inputs, outputs, and logic elements to the UDFB

from the library. You can even add other UDFB’s to this

schematic! For our example we need 3 inputs, one

output, an addition block and a multiply block. Click

the ‘Edit’ , ‘Add…’ or use the add button to open

the library.

You can find the inputs in the

‘Basic Elements’ section of the

library.

Choosing an Element

Double clicking on the ‘Input’ selection under ‘Basic Elements’ will grab the input item.

Alternately, you can single click ‘Input’ and then click the ‘OK’ button at the bottom of the

window. Caution: Do not click the ‘Drop’ button, it will temporarily remove the selected

item from the menu.

Once the element is grabbed, Eagle returns to the

schematic. An element is dropped with each click of the

mouse. Use the roller wheel on the mouse to zoom in and

out of the schematic and press ‘Escape’ to end the

insertion action.

Add all the Elements

Continue the add process to insert

one output, one addition block and

one multiply block to the schematic.

You can find ADD and MUL in the

MATH section of the library.

Add some text to the schematic to describe the function of the

UDFB. Click ‘Draw’, ‘Text’ or use the ‘Text’ button to open the

text tool. Add the text: “Point Slope Calculator Y=MX+b”.

Press escape to close the tool.

Name the Inputs and Outputs

Click ‘Edit’, ‘Value’ from the top left

corner of the screen to enter the set

value mode. Click the inputs and

outputs one at a time to set the value

(name) of each as shown.

Click the add wire button

and connect the elements as shown.

Click the end of a pin to start and

end a wire.

Add UDFB to the Library

Use ‘File’, ‘Save’ to save your changes. Click the UDFB

button and choose ‘Create’ to add the UDFB

 to the library.

Close the Eagle edit window, the UDFB is ready for use.

Additional UDFB

information can be

found in the

C&M_MC_Help

Overview section.

UDFB With CPP Overview

All function blocks have lines of

code behind them. It is possible to

create a UDFB containing your

custom lines of CPP code.

To do this we will construct a UDFB

containing only inputs and outputs.

We build the project to have C&M

create skeleton CPP files. We then

edit the skeleton files adding our

code.

The C&M_MC_HELP on this subject

can be found in the Overview

section under ‘C++ Library

Interfaces.

3 of 5 Averaging Problem

One of our customers needed a position averaging function. He wanted to average a set of 5

data points and not include the maximum and minimum samples in the average.

I came up with a solution based on the logic in this diagram. The function works but this might

be better implemented in CPP.

Lets create a UDFB from CPP code to solve the same problem.

Repurpose Existing Project

Open the Integrator project from the examples folder and save it to the project folder as

AVERAGE_DEMO.

Add an Skeleton UDFB

Add a User Derived Function Block to hold the CPP code. Add inputs and outputs shown in the image

below. Use the exact names shown, they will become the names of the arguments and returned

values for the CPP program. Update the library and save and close the UDFB. Rebuild the project to

generate the skeleton files.

Add a Cpp folder to the project.

Create a folder named Cpp under the project\source folder. The

new folder is shown in the image on the left. We must move the

two files named CppAverageImpl.cpp and CppAverageImpl.h

(Shown Below)from the project\Generated\Source\Cpp folder to

the folder we just created. Be sure to move them, they must no

longer exist in the Cpp folder under the Generated folder.

Add Code to the Header File

Add the hilighted line shown on the left

to the CppAverageImpl.h file.

Save the changes and close the file.

Add the lines of code shown on the

left to the body function in the

CppAverageImpl.cpp file. Save and

close the file.

Rebuild the Project

Clean the project and then do a

complete rebuild of the project.

Add an Empty UDFB to the Project

To create the UDFB start with a new empty schematic.

On the C&M Desktop click ‘File’, ‘New FBD (schematic)

Add DROP_AVERAGE UDFB To the Project

Add the elements shown on the left

to the empty schematic just

created. Save the schematic as

DROP_AVERAGE.

Delete the Integrator schematic

Open the Main schematic and

delete all the logic blocks, wires,

inputs and outputs.

Disconnect the Graphical HMI

Right click the INTERFACE object and

choose Set Connect . Clear the field

named “TYPE =“ and click “OK”

Add Averaging function

Add the inputs, outputs, the

DROP_AVERAGE UDFB, and the

wires as shown in the image at left.

Set the default values for

SAMPLE_RATE and SAMPLE_SIZE as

shown.

Close the schematic and rebuild the

project.

Set the project Options

Click File and Options from the

C&M Desktop.

Un-check the C&M Hmi and check

the C&M Min-Hmi.

Click Apply and OK

Run the Program

At startup the Min-Hmi will open with controls and indicators for each input and output on the main

schematic.

The program samples a stream of input data at the sample rate. After collecting the number of samples

indicated by sample size the average is calculated.

The calculated average will not include the maximum and minimum valued samples taken. For that

reason the actual number of samples in the average is always two less than the value of sample size.

To test, use a 10 second sample rate and the debugger to monitor the action and set the input value

manually from the mini HMI. The first sample is taken when the enable input goes true and subsequent

samples are taken each time the take sample input changes state.

